# TPF Briefing to the ORIGINS Subcommittee

Dan Coulter
Chas Beichman
June 7, 2002

# Agenda

- TPF Status Overview
- Architecture Concept Selection
- StarLight Status
- Pre-Formulation Planning

#### **TPF Status- Overview**

#### • Pre-Formulation Architecture Studies

- Received final reports, integrated models and technology roadmaps from all four study teams
- Architectures for further study and development have been selected
  - Visible coronagraph and nulling IR interferometer (connected and separated spacecraft
  - Project Briefed HQ
- Contracts have been extended to complete comprehensive study report
  - Draft Report in Review
  - Study Teams will be dissolved at the end of the contracts

### • Re-planning

- In the process of consolidating the Starlight effort with TPF
  - The Starlight team primary focus will be to provide a ground demonstration of the technology required for the formation flying interferometer version of TPF
- Formalizing coordination with ESA's DARWIN Mission
  - Draft LOA in review at State Department

### TPF Status- Overview (Cont.)

### Technology

- Continuing to work on TPF Technology Plan including the Starlight activities
  - Plan due end of this FY
- Several major Starlight technology milestones achieved
- Mid-IR nulling testbeds in operation at JPL (in collaboration with Keck)
- Advanced Cryocooler Technology Development Program is underway
  - Four teams are on contract and kickoff meetings have been held
- High Dynamic Range Imaging Testbed coming together at JPL
- Second major technology development procurement is in preparation for 2m class coronagraph mirror demonstrator
- Industry led system level TPF technology procurement and university/small business targeted TPF R&D procurement planned for later this year with funding in early FY2003

#### Science

- Completed, published and briefed HQ on Bio-Marker Studies
- Exo-Planet NRA selections made and contracts in place
- Released TPF related addition to ROSS NRA call
- Current SWG to be dissolved shortly;
  - Dear Colleague Letter will be sent out by HQ (7/1) for new Science Team<sub>4</sub>

#### TPF Architecture Selection Process



### Architecture Selection Criteria

#### Science capability

- Detect radiation from earth-like planets in the habitable zone
- Characterize orbital & physical properties
- Characterize atmospheres & search for bio-markers
- Provide broader understanding of all planetary system constituents (giant planets, debris disks, etc.)
- Provide advanced capability for astrophysics at minimal extra cost

#### • Technological maturity

- Understanding of the technology challenges
- Degree of difficulty with respect to the current state of the art and anticipated technology inheritance from prior missions (eg, NGST, SIRTF, SIM)
- Likelihood of meeting technology development goals by 2005 for the available budget

#### • Programmatic

- Relative cost and risk
- Relevance to future observatories providing ultra-high spatial resolution capability

## Key Science Requirements

- Sky coverage: 60%
- Mission duration: 5 years
- Science program:
  - Primary objective is planet detection and characterization
  - Secondary general astrophysics
- Planet Finding/Characterization:
  - Nominal planet is defined as solid body with Earth radius at 1 AU, T=270
     K. Assume exo-zodiacal dust will be 1-10x the solar system level.
  - Number of stars (F5-K5) surveyed for planets (R=3, SNR=5): 150
- Astrophysics:
  - Carry out program of high resolution imaging at minimal extra cost to the mission (reduced in scope relative to initial Architecture Study SOW)

## The Appearance of Distant Earths

- TPF-SWG (Des Marais et al.), Wolstencroft & Raven (2000) and NAI team (Meadows) have addressed appearance of Earths
- Both mid-IR and near-IR/visible contain important diagnostics





# Architectures Evaluated in Phase 1 Study

| <b>Architecture Families</b>                        | # | Architecture Families                                             | #  |
|-----------------------------------------------------|---|-------------------------------------------------------------------|----|
| Lockheed Martin                                     |   | Ball                                                              |    |
| Free Flying Interferometers                         | 4 | Coronagraphs: including Spergel-Kasdin Pupil, Masking, Phase Mask | 7  |
| Fizeau Interferometer                               | 1 | Occulting Screens                                                 | 2  |
| Connected Interferometers                           | 3 | Nulling Interferometers                                           | 10 |
| Tethered Interferometers                            | 1 | Hypertelescope                                                    | 2  |
| Coronagraphs                                        | 1 |                                                                   |    |
| TRW                                                 |   | Boeing-SVS                                                        |    |
| Large Aperture Coronagraph                          | 3 | Coronagraphs                                                      | 7  |
| Fresnel Coronagraph w/free flying elements          | 1 | Hypertelescope: including Snapshot<br>Imaging Array, Linear Array | 3  |
| 100 m sparse aperture                               | 1 | Interferometers: Separated Spacecraft, & Connected Structure      | 3  |
| Free Flying Occulter                                | 1 | Laser Trapped Mirror                                              | 1  |
| Interferometers: Connected and Separated Spacecraft | 8 |                                                                   |    |

# Architectures Evaluated in Phase 2 Study





Variable Pupil Visible Coronagraph (Ball)



Apodized Square Aperture (Boeing-SVS)





Structurally Connected IR Interferometer (LMMS)



Separated Spacecraft IR Interferometer (Book)





Large Aperture IR Coronagraph (TRW)



Non-Redundant Linear Array Hypertelescope (Boeing-SVS)<sub>10</sub>

### Candidate Architecture Characteristics

|                                                | Aperture/<br>Baseline                                                            | WFE /Optical<br>Path Error                                                                         | Precision<br>Deployment                       | Other                                                                                   |
|------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|
| Ball Spergel Visible Coronag raph              | 4x10m elliptical<br>monolith;<br>300 PM actuators;<br>apod ized pupil            | -1 -5nm rms manuf.;<br>-1n m rms corrected;<br>0.3Å rms stability;                                 | Telescop e<br>structure                       | Telescop e<br>rotates in L2 or<br>drift-away<br>orbit                                   |
| Boeing-SVS ASA Visible Coronag raph            | 8x8m square<br>segmented;<br>TBD PM<br>actuators;<br>apod ized pupil             | -3 -6nm rms manuf.;<br>-1n m corrected;<br>few Å rms stability;                                    | Telescop e<br>structure and<br>primary mirror | Assembly in orbit- then to L2                                                           |
| TRW IR<br>Coronag raph                         | 28m diameter<br>segmented; 13<br>PM actuators<br>per segment                     | 500nm rms manuf.;<br>-30n m rms corrected<br>-1 µm rms stability                                   | Telescop e<br>structure and<br>primary mirror | L2 orbit;<br>T=21K                                                                      |
| LMMS Structurally Connected IR Interferometer  | 9,21,40 m<br>baselines;<br>2x0.6m, 4x1.7m,<br>4x3.5m co llectors<br>respectively | <100 nm rms WFE;<br>7.2nm,10.6n m,10.6n m<br>Optical path error<br>(for 9,21,40 m<br>respectively) | Truss for 21 & 40m versions                   | Baseline<br>rotates; L2<br>orbit; T=60K,<br>40K, 40K (for<br>9,21,40 m<br>respectively) |
| "Book Concept" Separated S/C IRInterferometer  | 4x3.5m collectors; 1km baseline                                                  | <100 nm rms WFE;<br>3nm OPE                                                                        | none                                          | FF Baseline<br>rotates; L2<br>orbit; T=40K                                              |
| Boeing-SVS IR<br>Non-Redundant<br>Linear Array | 7x3m collectors;<br>100m baseline;                                               | λ/200 rms WFE<br>(40nm@ 8μm);<br>72nm OPE                                                          | 100m truss                                    | Baseline<br>rotates; LEO<br>assembly in<br>orbit then to<br>L2; T=100K                  |

Dan Coulter
Chas Beichman

# The Challenge of Angular Resolution



- Coronagraphs at  $>3\lambda/D$
- Interferometers at  $> 1 \lambda/B$



Radius of Habitable Zone (mas)

## Detect and Characterize Earth at 10 pc

| Architecture                                                                   | Time to Detect Earth Twin (SNR=5)     | Time to Detect<br>Planet's<br>Atmosphere          | Time to Detect Oxygen or Ozone                  |
|--------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Apodized Square<br>Aperture (ASA)                                              | 6.3 hr (incl. 2 rotations)            | 1 d (H <sub>2</sub> O)<br>R=20,SNR=5              | 3.8 d (O <sub>3</sub> )<br>R=20,SNR=5           |
| Non-Redundant Linear<br>Array (NRLA)                                           | 2.5 hr (one half rotation)            | 2.7 d (CO <sub>2</sub> )<br>R=10,SNR=5            | 2.1 d (O <sub>3</sub> )<br>R=20,SNR=5           |
| BASD Coronagraph                                                               | 0.86 hr (incl. 2 rotations)           | 0.14 d (H <sub>2</sub> O)<br>R=24,SNR=5           | 0.8 d (O <sub>2</sub> )<br>R=70,SNR=5           |
| BASD Shaped Pupil                                                              | 5.3 hr (incl. 9 rotations)            | 0.09 d (H <sub>2</sub> O)<br>R=24,SNR=5<br><10 pc | 0.7 d (O <sub>2</sub> )<br>R=70,SNR=5<br><10 pc |
| LMSS Structurally Connected Interferometer (40m)                               | 2 hr (but min 6hr<br>1 full rotation) | 0.8 d (H <sub>2</sub> O, O<br>R=20, SN            |                                                 |
| Separated Spacecraft Interferometer (Book)  2 hr (but min 6hr 1 full rotation) |                                       | 0.6 d (H <sub>2</sub> O, C)<br>R=20, SN           | 2 3                                             |

### Time To Survey 150 Stars (1 Epoch)



# Exo-Zodiacal Emission Affects Both Visible and IR



# Conclusions & Recommendations from the TPF-SWG

- Both the IR and the visible regions of the spectrum offer critical information on planets, their atmospheres and bio-markers and both should be pursued. Technology, not science will likely be the driver to determine which will be pursued first.
- Differentiating between the architecture alternatives will require
  - scientific insight to refine planet detection requirements
  - understanding of the real-world limitations of each architecture
  - support of technology development for both until a clear choice between them is quantitatively apparent
- Two classes of architectures are recommended for further study and technology development.
  - Visible light coronagraphs/apodized aperture systems
  - IR nulling interferometer systems- both separated spacecraft & structurally connected versions
- Reduced scale systems (relative to the full TPF) should also be studied further
  - Such systems (both architectures) are likely possible in the nearer-term
  - Project should evaluate benefits in cost, schedule and technology risk reduction against reduced science capabilities

# Conclusions and Recommendations of TPF Technology Review Panel

- TPF has two primary system architecture alternatives which should be pursued. The nature of the risk is different for the two.
- IR nulling interferometers
  - Biggest technical risk is system complexity
    - e.g., multi-level control, cryogenic operation,
  - Individual components and subsystems are less challenging than the system
    - Draws heavily on SIM, SIRTF and NGST
  - "Super large" (≥40m) structurally connected systems are a major risk and are not recommended for further consideration
    - However, ≤25m structures for a near term reduced scale system are largely an engineering challenge, not a technology challenge
- Visible coronagraphs.
  - Biggest technical risks are developing components/subsystems meeting requirements
    - e.g., mirror manufacturing and ≤Å level WFE stability is extremely challenging
  - System level operation is less challenging than the development and manufacture of the individual components/subsystems
    - Direct imaging, functionally simple

### JPL Architecture Selection Decision

- Study and develop technology for:
  - visible coronagraphs/apodized aperture systems
    - up to 8-10m aperture systems to do the full TPF science
    - smaller aperture systems as potential nearer term missions
  - IR nulling interferometer systems
    - separated spacecraft version to do the full TPF science
    - shorter baseline structurally connected IR interferometers as potential nearer term missions
- Evaluate reduced scale missions
  - determine cost, schedule and technology risk reduction
  - determine capability to address TPF science questions

# Steps to Visible Light TPF

- Near term, direct visible imaging with coronagraphs
  - Simple coronagraphs in near IR with NGST for closest stars and for hot, young Jupiters in 5 μm window
  - Advanced coronagraph/apodized 1-2 apertures in visible (MIDEX, Discovery)
    - $\rightarrow$  4 m ("TPF-Lite" offramp)
    - $\rightarrow$  8~10 m apertures (TPF)
- Properties of Giant Planets
  - $-Radius^{2}*albedo(\lambda)*\Phi(t)$
  - -Atmospheric composition
  - –Rotation → surface/atmospheric variability
- Detection of nearest earths
- Workshop to address ground/space trade
  - -What could 30-50-100(!) m telescope do?





### Steps to a Mid-IR TPF

- A precursor mid-IR nulling interferometer with two 0.6 m telescopes on a 10 m boom could detect hot, young Jupiters out to > 50 pc
- A larger precursor with 1-2 m mirrors on a 20 m boom could detect Jupiters within 25 pc and Earths within 8 pc
- Properties of Giant Planets
  - Radius and temperature
  - Atmospheric composition
- Orbital properties, radius and temperature of nearest Earths
- Extension of available technology
  - "TPF-Lite" Offramp =SIM- pico+ cryo





## StarLight Status- Overview

- New Guidelines
  - StarLight received direction from NASA Code S on 3/1/02 to:
    - Cease flight aspects of development
    - Focus on ground demonstration of technologies that support the formationflying interferometer concept for TPF
- Redirection of FY02 Activities:
  - FY02 Replan complete
  - Workforce transition nearly complete technologists retained, flight engineers successfully transitioned to other projects
  - Ball contract revised consistent with new charter
  - Flight design archive nearly complete
- Technology Milestones proceeding well
  - Formation Interferometer Testbed (fringe tracking)
  - Metrology technologies
  - AFF Prototype (Autonomous Formation Flying Sensor)
  - Formation Flying algorithm development and simulation
- Draft technology implementation plan for FY03-FY05

### Fringe Tracking Demonstrated in FIT



- White light fringes tracking demonstrated 2/27/2002
  - Instrument visibility 45% (matches the predicted value)
  - All control loops operating
  - Loops tracked for 20 min until deliberately broken (reqt was 10 sec)





### FIT Closed Loop Control – Moving Collector

PI M-850 Hexapod



- StarLight and Metrology Loops closed
- Collector moved through representative spacecraft motions
- Loops remain locked at 1/3 pixel (1 arcsec) stability
- Further improvement to 1/5 pixel required for final fringe tracking milestone

Stellar Beam Angle at CCD Due to Collector Coarse Stage Motion



Stellar Beam Angle Error at CCD



### StarLight Planning

- New StarLight charter:
  - Deliver by September 2005 a ground demonstration of formationflying interferometry technologies to influence the TPF architecture decision
- Ground demonstration of system technologies will include:
  - A set of testbeds and system engineering
  - Targeted component technology development
  - Parallel development of interferometer point designs for TPF
- StarLight will:
  - Submit a preliminary plan for peer review in June 2002
  - Write a joint task plan with TPF and submit a final plan for FY03-FY05
  - Hold a FY02 year-end technology presentation of what's been accomplished
  - Merge with, and become a supporting task to, TPF on October 1 2002 under a single UPN.

### TPF Pre-Formulation Plans

- Over the period FY2002-FY2005, TPF will perform a series of activities focused on selection a final architecture no later than FY2006 to support a new start in FY2007
- The Project will pursue science, technology and system studies associated with the two selected architectures
  - Science: \$4M-\$5M/year of competed R&A and fellowships for TPF foundation science
  - Technology: in-house efforts where JPL has special expertise;
     major competed outside system efforts; university/small business
     R&D
  - System studies: in house development of a range of point designs
- NASA will coordinate with ESA with the goal of achieving consensus on the best architecture for a joint planet finding mission

### Recommendations on Technology Development Approach- Per Technology Review Panel

- Recommend comprehensive set of laboratory breadboards and testbeds to validate system designs and models and to reveal unknowns
  - Two-beam system level interferometer to demonstrate planet detectability and predictability from an end-to-end basis.
  - Large-scale formation-flying testbed, e.g., a flat-floor facility to simulate much of formation flying technology
  - Large coronagraph optical optical train to demonstrate Å-level WF quality and passive stability, mirror producibility and model validity.
- Parallel development of integrated models.
- Coordination with Precursor Science and Technology Missions
  - "Eclipse"..or alternate concept....coronagraphy
  - SIM....structural stability, in-space structurally connected interferometry,
  - NGST, SIRTF...cryogenic mirrors, mechanisms, structures, sunshades
  - Keck, LBTI, et al....science and physical phenomena
- Technology flight demonstrations only if laboratory testbeds cannot conclusively resolve uncertainties

### Prioritized TPF Technology Development Plan Content Chas Beichman June 7, 2002

|                                     | Visible      | IR   | Interfer om   | eters                     |
|-------------------------------------|--------------|------|---------------|---------------------------|
| Technology                          | Coronagraphs | Core | Separated S/C | Structurally<br>Connected |
| Nulling                             |              | 1    |               |                           |
| Cryocoo ler                         |              | 1    |               |                           |
| Cryogen ic Opto-<br>Mechanics       |              | 2    |               |                           |
| High Contrast Imaging               | 1            |      |               |                           |
| Wavefront Sensing & Control         | 1            | 3    |               |                           |
| Large Optics                        | 1            | 3    |               |                           |
| Formation Flying                    |              | -    | 1             |                           |
| Precision Deploy able<br>Structures | 3            |      | •             | 3                         |
| Low Thrust Propulsion               | 2            | 1    |               |                           |
| Metrology                           | 2            | 2    |               |                           |
| System/Sub system<br>Testbed s      | 1            | 1    |               |                           |
| Integrated Modeling                 | 2            | 2    |               |                           |

### System Level Technology

- Planned testbeds and breadboards
  - Interferometers
    - Cryogenic IR nulling and beam train breadboards
    - IR interferometer system testbed
      - Metrology
      - Structure
    - Cryocoolers
    - Separated spacecraft interferometer testbed (FIT+)
    - Formation flying testbeds
      - Formation control
      - Formation sensing
      - SPHERES
  - Coronagraphs
    - High contrast imaging testbed
    - High actuator density deformable mirror breadboards
    - Large visible optics
    - Visible coronagraph system testbed

Planned out-of-house Planned at JPL

#### TPF Schedule



#### Conclusion

- Visible coronagraphs and IR nulling interferometers have been selected as candidate architectures for further study and development
- The TPF Project will pursue science, technology and system studies associated with these architectures
  - Science: significant competed outside R&A for TPF foundation science
  - Technology: in-house efforts where JPL has special expertise;
     major competed outside efforts
  - System studies: in house development of a range of point designs
- Annual reviews of science, technology, and point design progress will be held to judge readiness for selection of TPF architecture
- TPF will coordinate with the ESA DARWIN Study
  - Science Team participation
  - Technical Interchange Meetings
  - Management team coordination meetings
  - Pre-formulation products
    - Jointly agreed upon architecture decision
    - Formulation phase technology development strategy
    - Formulation phase Letter of Agreement

# **Backup Charts**

# Major Strengths & Weaknesses: Visible Coronagraphs

|   | Strengths                                                                                    | Weaknesses                                                                                                     |
|---|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| B | ALL                                                                                          | BALL                                                                                                           |
| • | High Q*≈1; Less affected by zodiacal background                                              | • 4x10m monolithic lightweight primary mirror required                                                         |
| • | Direct imaging; functionally simple; 'Rapid' single mode data collection Ambient temperature | <ul> <li>Extraordinary wavefront accuracy needed</li> <li>Sub-Å WF quality for multi-hour durations</li> </ul> |
| • | Testable                                                                                     | Requires high contrast starlight suppression                                                                   |
| • | Large visible telescope capability for                                                       | <ul> <li>Not extendable to future ultra-high resolution</li> </ul>                                             |
|   | ancillary astrophysics                                                                       | observatories                                                                                                  |
| • | <b>BOEING-SVS</b>                                                                            | BOEING-SVS                                                                                                     |
| • | Less demanding wavefront accuracy                                                            | • Q<1 implies stringent stability requirements                                                                 |
|   | needed (at expense of Q)                                                                     | Requires high contrast starlight suppression                                                                   |
| • | Direct imaging; functionally simple;                                                         | • 8x8m square lightweight deployable                                                                           |
|   | 'Rapid' single mode data collection                                                          | segmented primary mirror                                                                                       |
| • | Ambient temperature                                                                          | <ul> <li>Passive sub-Å WF quality for multi-hour</li> </ul>                                                    |
| • | Testable                                                                                     | durations                                                                                                      |
| • | Large visible telescope capability for ancillary astrophysics                                | Not extendable to future ultra-high resolution observatories                                                   |

<sup>\*</sup>The parameter 'Q' is the ratio of planet flux (light) in the pixel to the background flux in the pixel. It is a measure of signal detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required background rejection. Wavefront stability during integration  $\sim \sigma/Q$ , 30 nm/10<sup>4</sup> $\sim$ 3 picometer

# Major Strengths & Weaknesses: IR Coronagraph

| Strengths                                                                                                                                                                                                                                                                                                                   | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>TRW Concept</li> <li>Relaxed PM and other optical tolerances relative to visible systems</li> <li>Direct imaging, functionally simple</li> <li>Classical coronagraph architecture, functionally well understood</li> <li>NGST linkage</li> <li>Large IR telescope capability for ancillary astrophysics</li> </ul> | <ul> <li>TRW Concept</li> <li>Q&lt;&lt;1 implies stringent stability requirements on telescope</li> <li>Poor resolution (λ/D 20X that of visible systems)</li> <li>28m Segmented cryogenic primary mirror</li> <li>Complicated deployment</li> <li>Post-deployment mechanical stability concerns</li> <li>21K operating temperature</li> <li>Poor overall testability</li> <li>Not easily extendable to future ultra-high resolution observatories</li> </ul> |

<sup>\*</sup>The parameter 'Q' is the ratio of planet flux (light) in the pixel to the background flux in the pixel. It is a measure of signal detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required background rejection. Wavefront stability during integration  $\sim \sigma/Q$ , 30 nm/10<sup>4</sup> $\sim$ 3 picometer

# Major Strengths & Weaknesses: IR Interferometers (Structurally Connected)

| Strengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Modest size 1.7m collector telescopes         <ul> <li>3.5m optics for 40m version</li> <li>Use SIRTF or NGST technology for lightweight optics</li> </ul> </li> <li>Exploits existing and continuing technology         <ul> <li>SIM, Palomar, Keck, MMT, LBTI, SIRTF, NGST</li> </ul> </li> <li>Minimal component-level concerns</li> <li>Structurally connected design simplifies line of sight rotation mechanics relative to separated s/c version</li> </ul> | <ul> <li>LMMS</li> <li>Reduced science capability         <ul> <li>≥40m version required for TPF planet finding</li> </ul> </li> <li>Fixed baseline         <ul> <li>Eliminates capability to tune the baseline to maximize contrast ratio and/or spectral throughput</li> </ul> </li> <li>40K operating temperature</li> <li>Testing and verification complexity</li> <li>System and operational complexity</li> <li>Not extendable to future ultra-high resolution observatories</li> </ul> |

# Major Strengths & Weaknesses: IR Interferometers (Separated S/C)

|                         | Strengths                                                                                                                                                                                                                                                                                                                                                                             |    | Weaknesses                                                                                                                                                                                                                                                                                                |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Bo                     | ok" Concept                                                                                                                                                                                                                                                                                                                                                                           | "I | Book" Concept                                                                                                                                                                                                                                                                                             |
| • N • r • R • a • N • N | Maximized science capability  - Provides very high resolution imaging capability  Variable baseline can optimize contrast atio and/or spectral throughput Reconfigurable, highly resilient architecture  Modest size (3.5m) collector telescopes  - Use SIRTF or NGST technology for lightweight optics  Minimal component-level concerns  Exploits existing and continuing echnology | •  | Requires precision formation flying  - including line of sight rotation  - Requires precision spacecraft-to spacecraft metrology and communications  40K operating temperature  Weight and volume may require additional launches  Testing and verification complexity  System and operational complexity |
| • E                     | <ul> <li>SIM, Palomar, Keck, MMT, LBTI, SIRTF, NGST</li> <li>Extendable to future ultra-high esolution observatories</li> </ul>                                                                                                                                                                                                                                                       |    |                                                                                                                                                                                                                                                                                                           |

## Major Strengths & Weaknesses: Hyper-Telescope

| Strengths                                                                                                                                                                                                                                                                                                                                          | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Boeing-SVS Concept</b>                                                                                                                                                                                                                                                                                                                          | <b>Boeing-SVS Concept</b>                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Much less sensitive to exo-zodiacal light than Bracewell interferometry (Q≈1)</li> <li>Densified pupil eliminates "fixed baseline problem" of Bracewell-type interferometers</li> <li>Imaging capability directly applicable for high resolution astrophysics</li> <li>Precursor to future ultra-high resolution observatories</li> </ul> | <ul> <li>Complex optical design, not as mature as the other options and all issues may not have been identified</li> <li>Long (100m) connecting structure</li> <li>Multiple launches required (3 estimated)</li> <li>In-space assembly either by astronauts or robotics <ul> <li>Transfer to operational orbit</li> </ul> </li> <li>Tight beam alignment tolerances and/or controls</li> <li>Testing and verification complexity</li> <li>System complexity</li> </ul> |

